ECED 3300
Tutorial 4

Problem 1

V x (B;r):B,

where r = a,x + a,y + a.z and B is a constant vector.

Show that

Solution

By definition,

a, a, a,

Bxr=|B, B, B, |= (2B, —yB.)a, + (vA, — 24,)a, + (yB, — xB,)a..

x Yy =z
It then follows that
a, a, a,
Bxr
v X 2 = ax ay az ;

(2B, —yB.) txA. — zA, 5(yB, —2B,)

Thus,

V X <B; r) = a,(B,/2+ By/2) —a,(-B,/2 — B,/2) + a.[B./2 — (—B./2)] = B.

Q.E.D. The physical significance of the result is as follows. We will learn that a magnetic flux
density B is related to a vector potential A via a curl, B =V x A. Hence the vector potential of

a uniform magnetic field is A = (B x r).

Problem 2

Show that for any vector field, V - (V x A) = 0.

Solution



Introduce an auxiliary vector field, F = V x A. By the definition of divergence, V - F =
0y F, + 0, F, + 0. F.. Using the components of a cirl in the Cartesian coordinates for the Formula

Sheet, we can rewrite our divergence as
V-F =0,0,A, — 0,A, + 0,0,A;, — 0, A, + 0,0, A, — 0, A,.
Multiplying through and taking the partials, gives
2 2 2 2 2 2
V-(VxA)=0,,A. -0, A, +0, Ay — 0, A. + 0., A, — 0;,A, = 0.
This follows by noticing that mixed partial derivatives are the same, EﬁyAz = 8§zAz etc. Q.E.D.

Note: This vector calculus identity enables one to automatically satisfy the divergence equation

for the magnetic flux density by introducing the vector potential.

Problem 3

Verify Stokes’s theorem, §. dl-F = [ dS-(V xF), for the vector field F = ya, —ra, + za,. Here
C a circle of radius R centered at the origin in the xy-plane and S is curved and upper surfaces

of the cylinder of radius R and height h rimmed by the circle.
Solution

1) On the one hand, F can be converted to the cylindrical coordinates on C' using the Formula

Sheet to yield,
F = psin¢(a, cos ¢ — a,sin¢) — pcoso(a,sing + azcos @) + a,z = —azp + a, 2.
Further, on C, dl = a;Rd¢ and p = R and z = 0 implying that.
F=—-ayR.
It then follows that
?édl F=_R? /02” dé (as - ay) = —21R™.
2) On the other hand,

a, pay a,
1 a
VxF=>|9, 9, 0.|=—(-2p) = —2a.,.
D p Yo p( )
0 —p? 2

Thus, only flux through the top is nonzero. In this case, dS = a,pdpd¢. Hence,
2w R
/dS (VX F) :/ d¢/ dpp(—2a, -a,) = —27R?.
0 0

2



Problem 4

Verify Stokes’s theorem for the vector field B = p cos ¢a, + sin ¢a, by evaluating

(a) $- dl- B over a semicircular contour of radius 2 centered at the origin in the upper half-plane
xy.

(b) [¢dS - (V x B) over the surface of the semicircle.

Solution

(a) The path consists of two parts: —2 < x < 2, where dl = a,dx, and p = 2, where dl = 2a,d¢.
In the interval —2 < o < 2, ¢ = 0 for positive x and ¢ = 7 for negative x, implying that in

Cartesian coordinates the field is given by

. ra,, x>0

—za,, * <0

The field along the arc p = 2 can be represented in polar coordinates as B = 2 cos ¢a,+sin ¢ay.

It then follows that

0 2 s
faB=— [ dro+ [ deo+2 [ dosing =4+ 2cos0f) = .
C -2 0 0

(b) On the other hand,

VxB=0 4 pa
p
It then follows that

2 ™ 1 T 2
/SdS-(VXB) :/0 dpp/0 d¢81rpl¢(1+,0) :/0 dgbsingb/ﬂ dp(1+p) = (p+ %pQ)’zXCosqﬂ?r = 8.

Problem 5

Show that the area A enclosed by a curve C' lying entirely in the xy-plane is given by the magnitude
of the vector F,

where p = a,x + ayy.

Solution



It follows from the definition that F = |F|a,. Hence,
F|=F a,=;fca. (pxd)=;ddl-(a xp),
Applying the Stokes theorem to the right-hand side, we obtain,
Bl = L fodl-(a. x p) = 3 [5dS -V x (a. x p),
where for a closed curve in the xy-plane
dS = a,ds.

Notice that

a, x p=u(a, xa,)+ya, x a,) =za, —ya,.

Further,
a, a, a,
Vx(a,xp)=|09, 9, 0,|=2a..
-y x 0
Therefore,
F| =3 x2[gdS(a,-a,) = [¢dS = A.
Q.E.D.



