# ECED 3300 <br> Tutorial 4 

## Problem 1

Show that

$$
\nabla \times\left(\frac{\mathbf{B} \times \mathbf{r}}{2}\right)=\mathbf{B}
$$

where $\mathbf{r}=\mathbf{a}_{x} x+\mathbf{a}_{y} y+\mathbf{a}_{z} z$ and $\mathbf{B}$ is a constant vector.

## Solution

By definition,

$$
\mathbf{B} \times \mathbf{r}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
B_{x} & B_{y} & B_{z} \\
x & y & z
\end{array}\right|=\left(z B_{y}-y B_{z}\right) \mathbf{a}_{x}+\left(x A_{z}-z A_{x}\right) \mathbf{a}_{y}+\left(y B_{x}-x B_{y}\right) \mathbf{a}_{z}
$$

It then follows that

$$
\nabla \times\left(\frac{\mathbf{B} \times \mathbf{r}}{2}\right)=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
\frac{1}{2}\left(z B_{y}-y B_{z}\right) & \frac{1}{2} x A_{z}-z A_{x} & \frac{1}{2}\left(y B_{x}-x B_{y}\right)
\end{array}\right|
$$

Thus,

$$
\nabla \times\left(\frac{\mathbf{B} \times \mathbf{r}}{2}\right)=\mathbf{a}_{x}\left(B_{x} / 2+B_{x} / 2\right)-\mathbf{a}_{y}\left(-B_{y} / 2-B_{y} / 2\right)+\mathbf{a}_{z}\left[B_{z} / 2-\left(-B_{z} / 2\right)\right]=\mathbf{B}
$$

Q.E.D. The physical significance of the result is as follows. We will learn that a magnetic flux density $\mathbf{B}$ is related to a vector potential $\mathbf{A}$ via a curl, $\mathbf{B}=\nabla \times \mathbf{A}$. Hence the vector potential of a uniform magnetic field is $\mathbf{A}=\frac{1}{2}(\mathbf{B} \times \mathbf{r})$.

## Problem 2

Show that for any vector field, $\nabla \cdot(\nabla \times \mathbf{A})=0$.

## Solution

Introduce an auxiliary vector field, $\mathbf{F}=\nabla \times \mathbf{A}$. By the definition of divergence, $\nabla \cdot \mathbf{F}=$ $\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$. Using the components of a cirl in the Cartesian coordinates for the Formula Sheet, we can rewrite our divergence as

$$
\nabla \cdot \mathbf{F}=\partial_{x} \partial_{y} A_{z}-\partial_{z} A_{y}+\partial_{y} \partial_{z} A_{x}-\partial_{x} A_{z}+\partial_{z} \partial_{x} A_{y}-\partial_{y} A_{x}
$$

Multiplying through and taking the partials, gives

$$
\nabla \cdot(\nabla \times \mathbf{A})=\partial_{x y}^{2} A_{z}-\partial_{x z}^{2} A_{y}+\partial_{y z}^{2} A_{x}-\partial_{y x}^{2} A_{z}+\partial_{z x}^{2} A_{y}-\partial_{z y}^{2} A_{x}=0
$$

This follows by noticing that mixed partial derivatives are the same, $\partial_{x y}^{2} A_{z}=\partial_{y x}^{2} A_{z}$ etc. Q.E.D. Note: This vector calculus identity enables one to automatically satisfy the divergence equation for the magnetic flux density by introducing the vector potential.

## Problem 3

Verify Stokes's theorem, $\oint_{C} d \mathbf{l} \cdot \mathbf{F}=\int d \mathbf{S} \cdot(\nabla \times \mathbf{F})$, for the vector field $\mathbf{F}=y \mathbf{a}_{x}-x \mathbf{a}_{y}+z \mathbf{a}_{z}$. Here $C$ a circle of radius $R$ centered at the origin in the xy-plane and $S$ is curved and upper surfaces of the cylinder of radius $R$ and height $h$ rimmed by the circle.

## Solution

1) On the one hand, $\mathbf{F}$ can be converted to the cylindrical coordinates on $C$ using the Formula Sheet to yield,

$$
\mathbf{F}=\rho \sin \phi\left(\mathbf{a}_{\rho} \cos \phi-\mathbf{a}_{\phi} \sin \phi\right)-\rho \cos \phi\left(\mathbf{a}_{\rho} \sin \phi+\mathbf{a}_{\phi} \cos \phi\right)+\mathbf{a}_{z} z=-\mathbf{a}_{\phi} \rho+\mathbf{a}_{z} z
$$

Further, on $C, d \mathbf{l}=\mathbf{a}_{\phi} R d \phi$ and $\rho=R$ and $z=0$ implying that.

$$
\mathbf{F}=-\mathbf{a}_{\phi} R
$$

It then follows that

$$
\oint_{C} d \mathbf{l} \cdot \mathbf{F}=-R^{2} \int_{0}^{2 \pi} d \phi\left(\mathbf{a}_{\phi} \cdot \mathbf{a}_{\phi}\right)=-2 \pi R^{2}
$$

2) On the other hand,

$$
\nabla \times \mathbf{F}=\frac{1}{\rho}\left|\begin{array}{ccc}
\mathbf{a}_{\rho} & \rho \mathbf{a}_{\phi} & \mathbf{a}_{z} \\
\partial_{\rho} & \partial_{\phi} & \partial_{z} \\
0 & -\rho^{2} & z
\end{array}\right|=\frac{\mathbf{a}_{z}}{\rho}(-2 \rho)=-2 \mathbf{a}_{z}
$$

Thus, only flux through the top is nonzero. In this case, $d \mathbf{S}=\mathbf{a}_{z} \rho d \rho d \phi$. Hence,

$$
\int d \mathbf{S} \cdot(\nabla \times \mathbf{F})=\int_{0}^{2 \pi} d \phi \int_{0}^{R} d \rho \rho\left(-2 \mathbf{a}_{z} \cdot \mathbf{a}_{z}\right)=-2 \pi R^{2}
$$

## Problem 4

Verify Stokes's theorem for the vector field $\mathbf{B}=\rho \cos \phi \mathbf{a}_{\rho}+\sin \phi \mathbf{a}_{\phi}$ by evaluating
(a) $\oint_{C} d \mathbf{l} \cdot \mathbf{B}$ over a semicircular contour of radius 2 centered at the origin in the upper half-plane $x y$.
(b) $\int_{S} d \mathbf{S} \cdot(\nabla \times \mathbf{B})$ over the surface of the semicircle.

## Solution

(a) The path consists of two parts: $-2 \leq x \leq 2$, where $d \mathbf{l}=\mathbf{a}_{x} d x$, and $\rho=2$, where $d \mathbf{l}=2 \mathbf{a}_{\phi} d \phi$. In the interval $-2 \leq x \leq 2, \phi=0$ for positive $x$ and $\phi=\pi$ for negative $x$, implying that in Cartesian coordinates the field is given by

$$
\mathbf{B}=\left\{\begin{array}{rr}
x \mathbf{a}_{x}, & x>0 \\
-x \mathbf{a}_{x}, & x<0
\end{array}\right.
$$

The field along the arc $\rho=2$ can be represented in polar coordinates as $\mathbf{B}=2 \cos \phi \mathbf{a}_{\rho}+\sin \phi \mathbf{a}_{\phi}$. It then follows that

$$
\oint_{C} d \mathbf{l} \cdot \mathbf{B}=-\int_{-2}^{0} d x x+\int_{0}^{2} d x x+2 \int_{0}^{\pi} d \phi \sin \phi=4+\left.2 \cos \phi\right|_{\pi} ^{0}=8
$$

(b) On the other hand,

$$
\nabla \times \mathbf{B}=\frac{\sin \phi}{\rho}(1+\rho) \mathbf{a}_{z} .
$$

It then follows that

$$
\begin{gathered}
\int_{S} d \mathbf{S} \cdot(\nabla \times \mathbf{B})=\int_{0}^{2} d \rho \rho \int_{0}^{\pi} d \phi \frac{\sin \phi}{\rho}(1+\rho)=\int_{0}^{\pi} d \phi \sin \phi \int_{0}^{2} d \rho(1+\rho)=\left.\left(\rho+\frac{1}{2} \rho^{2}\right)\right|_{0} ^{2} \times\left.\cos \phi\right|_{\pi} ^{0}=8 . \\
\text { Problem } 5
\end{gathered}
$$

Show that the area A enclosed by a curve C lying entirely in the xy-plane is given by the magnitude of the vector $\mathbf{F}$,

$$
\mathbf{F}=\frac{1}{2} \oint_{C} \boldsymbol{\rho} \times d \mathbf{l}
$$

where $\boldsymbol{\rho}=\mathbf{a}_{x} x+\mathbf{a}_{y} y$.

## Solution

It follows from the definition that $\mathbf{F}=|\mathbf{F}| \mathbf{a}_{z}$. Hence,

$$
|\mathbf{F}|=\mathbf{F} \cdot \mathbf{a}_{z}=\frac{1}{2} \oint_{C} \mathbf{a}_{z} \cdot(\boldsymbol{\rho} \times d \mathbf{l})=\frac{1}{2} \oint_{C} d \mathbf{l} \cdot\left(\mathbf{a}_{z} \times \boldsymbol{\rho}\right),
$$

Applying the Stokes theorem to the right-hand side, we obtain,

$$
|\mathbf{F}|=\frac{1}{2} \oint_{C} d \mathbf{l} \cdot\left(\mathbf{a}_{z} \times \boldsymbol{\rho}\right)=\frac{1}{2} \int_{S} d \mathbf{S} \cdot \nabla \times\left(\mathbf{a}_{z} \times \boldsymbol{\rho}\right),
$$

where for a closed curve in the $x y$-plane

$$
d \mathbf{S}=\mathbf{a}_{z} d S
$$

Notice that

$$
\mathbf{a}_{z} \times \boldsymbol{\rho}=x\left(\mathbf{a}_{z} \times \mathbf{a}_{x}\right)+y\left(\mathbf{a}_{z} \times \mathbf{a}_{y}\right)=x \mathbf{a}_{y}-y \mathbf{a}_{x}
$$

Further,

$$
\nabla \times\left(\mathbf{a}_{z} \times \boldsymbol{\rho}\right)=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
-y & x & 0
\end{array}\right|=2 \mathbf{a}_{z}
$$

Therefore,

$$
|\mathbf{F}|=\frac{1}{2} \times 2 \int_{S} d S\left(\mathbf{a}_{z} \cdot \mathbf{a}_{z}\right)=\int_{S} d S=A
$$

Q.E.D.

